Status
Completed
Material Class
Polymers / Metals / E-Scrap
specific materials
21-01-RR-5014

Recycling Technologies for Silicon Solar Modules

NODE
Technical Thrust
Recycling & Recovery
Chemical & Solvent-Based Recycling & Separation (Atomic/Molecular) Technologies
project Members
ASU arizona state univeristy logo
First solar logo
TG Companies LLC
About

The objective of this project is to develop a ready-to-commercialize recycling process to recover materials from silicon modules: solar-grade silicon, lead, silver, tin, solar-quality glass cullet, aluminum, and copper. The focus is on a new chemical recycling process to recover solar-grade silicon, lead, silver, tin, and copper from silicon cells.

Upon completion, this project will deliver an optimized chemical recycling process for silicon solar cells extracted from modules. The optimized process will be the basis for designing and constructing a pilot plant for silicon module recycling at 100,000 modules/year in the U.S. which recovers solar-grade silicon, lead, silver, solar-quality glass cullet, aluminum, copper, and tin from silicon modules. This project will increase secondary materials recovery by about 0.2MMT, embodied energy savings of 22PJ, and GHG emissions reduction of 1.106MMT. Assumptions based on recycling 20% of the expected EOL solar panels in the U.S. in 2030.

PUBLICATIONS

June 11, 2023
Silver Recovery through a Fluoride Chemistry for Solar Module Recycling
Conference Paper

​T. Chen and M. Tao, Silver Recovery through a Fluoride Chemistry for Solar Module Recycling, 50th IEEE Photovoltaic Specialists Conference (San Juan, PR, 2023)​​ 

Pub. Info: 50th IEEE Photovoltaic Specialists Conference, San Juan, PR 2023
DOI: DOI: 10.1109/PVSC48320.2023.10359811
December 1, 2023
Recent Progress and Future Prospects of Silicon Solar Module Recycling
Journal Article
Pub. Info: Current Opinion in Green and Sustainable Chemistry, 44, 100863 (2023)
June 15, 2024
Innovative Recycling of High Purity Silver from Silicon Solar Cells by Acid Leaching and Ultrasonication
Journal Article
Pub. Info: Solar Energy Materials & Solar Cells (Science Direct Elsevier)
May 11, 2024
Recovery of Metallic Lead from End-Of-Life Silicon Solar Modules Using Salt Bridge Electrowinning
Journal Article
Pub. Info: Waste Management Bulletin, 2, 226-231 (2024).
February 16, 2024
Design Changes for Improved Circularity of Silicon Solar Modules
Journal Article
Pub. Info: One Earth

RELATED PROJECTS

Project Search

Project Search

Aluminum

Aluminum is one of the most important materials for the energy transition. It is used throughout multiple industries including aerospace and automotive. It is especially important for electric vehicles. 

Read More

Steel

Steel is widely used and one of the most energy intensive materials. It is the focus of global decarbonization efforts due to it’s importance to numerous industries including construction, defense, automotive, aerospace, plkus many more.

Read More

Copper

Copper is officially listed as one of the nations most critical minerals. We are working everyday to reduce the U.S.’s reliance on foreign countries for this vital resource.

Read More

Cast Iron

Cast iron is import to multiple industries, including the heavy duty construction and agricultural industries.

Read More

Platinum Group Metals (PGMs)

Platinum

Platinum is critical to the nation’s energy transition and is especially important to the highly-competitive electronics industry. 

Read More

Palladium

Palladium is critical to the nation’s energy transition and is especially important to the highly-competitive electronics industry. 

Read More

Polyethylene terephthalate (PET)

Polyethylene terephthalate (PET) is a type of thermoplastic polymer that is widely used in the production of plastic bottles, packaging materials, and fibers. It is known for its lightweight, transparent, and durable properties, making it a popular choice for various applications. PET is recyclable and commonly identified by the recycling symbol with the number 1 inside, indicating its suitability for recycling and reprocessing.

Read More

Rubber

The materials of modern pneumatic tires are synthetic rubber, natural rubber, fabric, and wire, along with carbon black and other chemical compounds.
Read More

Polyamides

This complex polymer includes materials such as nylon and Kevlar.

Read More

Polyolefins

Polyethylene (PE)

Polyethylene (PE) is a versatile and widely used thermoplastic polymer that is known for its strength, flexibility, and chemical resistance. It is a key component in various everyday products, including plastic bags, films, bottles, pipes, and containers. PE is categorized into different types based on its density, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE), and linear low-density polyethylene (LLDPE). Its properties, affordability, and ease of processing have contributed to its extensive use across numerous industries, from packaging and construction to automotive and medical applications.

Read More

Polypropylene (PP)

Polypropylene (PP) is a highly versatile thermoplastic polymer known for its durability, chemical resistance, and high melting point. It is widely used in a diverse range of applications, including packaging materials, textiles, automotive components, and medical devices. PP offers excellent strength-to-weight ratio, good impact resistance, and flexibility, making it suitable for various demanding environments. It is also known for its resistance to moisture, chemicals, and UV radiation, enhancing its suitability for outdoor and long-term applications. PP is recyclable and widely used in both consumer and industrial products due to its cost-effectiveness and favorable performance characteristics.

Read More

Polystyrene (PS)

Polystyrene (PS) is a synthetic aromatic polymer that is widely used in the production of disposable foam products, such as food containers, packaging materials, and insulation. It is a lightweight material with excellent thermal insulation properties. PS can exist in two forms: expanded polystyrene (EPS), commonly known as foam or styrofoam, and solid polystyrene. EPS is lightweight, rigid, and offers good cushioning and insulation, while solid polystyrene is transparent, brittle, and commonly used in products like CD cases and disposable cutlery. PS is cost-effective, versatile, and has a wide range of applications due to its ability to be easily molded and its overall durability.

Read More