Status
Completed
Material Class
E-Scrap
specific materials
Printed Circuit Boards (PCBs)
18-01-RM-14

Condition Assessment of Used Electronics

NODE
Technical Thrust
Remanufacturing & EOL Reuse
Remanufacturing Analysis Tools & Methods
project Members
Corecentric solutions logo
Caterpillar inc logo
Rochester institute of technology logo
About

During remanufacturing, a previously used, worn, or non-functional product or part is returned to “like-new” or “better-than-new” condition from both a quality and performance perspective. One factor that limits remanufacturing in the automotive, consumer products, and heavy-duty off-road industries is the inability to detect solder joint and interconnect failures in printed circuit boards (PCBs). Although these defects, which account for 13% of all electronics failures, can be easily and effectively repaired once they have been identified, detecting these types of failures on used electronics is costly because inspections are performed manually.

To reduce this barrier and increase the number of PCBs that can be remanufactured, the project team evaluated several inspection methods to determine whether they effectively identified defects and could be cost-effectively implemented. The team is currently building an inspection system and decision support tool that will be installed at one of the team member’s remanufacturing facilities. Once implemented, this technology is expected to increase PCB remanufacturing by 25-35% and reduce embodied energy by 30% in the heavy-duty equipment industry.

PUBLICATIONS

March 17, 2022
Machine Learning for health assessment of LEDs on used printed circuit boards using image data
Webinar

“Machine Learning for health assessment of LEDs on used printed circuit boards using image data” was presented in an RIC webinar "Remanufacturing & Industry 4.0: Machine Learning and Artificial Intelligence"

Pub. Info: RIC Webinar "Remanufacturing & Industry 4.0: Machine Learning and Artificial Intelligence"

RELATED PROJECTS

Project Search

Project Search

Aluminum

Aluminum is one of the most important materials for the energy transition. It is used throughout multiple industries including aerospace and automotive. It is especially important for electric vehicles. 

Read More

Steel

Steel is widely used and one of the most energy intensive materials. It is the focus of global decarbonization efforts due to it’s importance to numerous industries including construction, defense, automotive, aerospace, plkus many more.

Read More

Copper

Copper is officially listed as one of the nations most critical minerals. We are working everyday to reduce the U.S.’s reliance on foreign countries for this vital resource.

Read More

Cast Iron

Cast iron is import to multiple industries, including the heavy duty construction and agricultural industries.

Read More

Platinum Group Metals (PGMs)

Platinum

Platinum is critical to the nation’s energy transition and is especially important to the highly-competitive electronics industry. 

Read More

Palladium

Palladium is critical to the nation’s energy transition and is especially important to the highly-competitive electronics industry. 

Read More

Polyethylene terephthalate (PET)

Polyethylene terephthalate (PET) is a type of thermoplastic polymer that is widely used in the production of plastic bottles, packaging materials, and fibers. It is known for its lightweight, transparent, and durable properties, making it a popular choice for various applications. PET is recyclable and commonly identified by the recycling symbol with the number 1 inside, indicating its suitability for recycling and reprocessing.

Read More

Rubber

The materials of modern pneumatic tires are synthetic rubber, natural rubber, fabric, and wire, along with carbon black and other chemical compounds.
Read More

Polyamides

This complex polymer includes materials such as nylon and Kevlar.

Read More

Polyolefins

Polyethylene (PE)

Polyethylene (PE) is a versatile and widely used thermoplastic polymer that is known for its strength, flexibility, and chemical resistance. It is a key component in various everyday products, including plastic bags, films, bottles, pipes, and containers. PE is categorized into different types based on its density, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE), and linear low-density polyethylene (LLDPE). Its properties, affordability, and ease of processing have contributed to its extensive use across numerous industries, from packaging and construction to automotive and medical applications.

Read More

Polypropylene (PP)

Polypropylene (PP) is a highly versatile thermoplastic polymer known for its durability, chemical resistance, and high melting point. It is widely used in a diverse range of applications, including packaging materials, textiles, automotive components, and medical devices. PP offers excellent strength-to-weight ratio, good impact resistance, and flexibility, making it suitable for various demanding environments. It is also known for its resistance to moisture, chemicals, and UV radiation, enhancing its suitability for outdoor and long-term applications. PP is recyclable and widely used in both consumer and industrial products due to its cost-effectiveness and favorable performance characteristics.

Read More

Polystyrene (PS)

Polystyrene (PS) is a synthetic aromatic polymer that is widely used in the production of disposable foam products, such as food containers, packaging materials, and insulation. It is a lightweight material with excellent thermal insulation properties. PS can exist in two forms: expanded polystyrene (EPS), commonly known as foam or styrofoam, and solid polystyrene. EPS is lightweight, rigid, and offers good cushioning and insulation, while solid polystyrene is transparent, brittle, and commonly used in products like CD cases and disposable cutlery. PS is cost-effective, versatile, and has a wide range of applications due to its ability to be easily molded and its overall durability.

Read More